DNA变性是指双螺旋之间氢键断裂,双螺旋解开,形成单链无规则线团,因而发生性质改变,称为DNA变性。加热、改变DNA溶液的pH、或受有机溶剂等理化因素的影响,均可使DNA变性。

核心提示:分子杂交的概念及基本原理一、分子杂交的概念:
分子杂交(molecular hybridization)指具有一定同源序列的两条核酸单链(DNA

通常,可利用DNA变性后波长260nm处紫外吸收的变化追踪变性过程。因为DNA在260nm处有最大吸收值这一特征是由于含有碱基组成的缘故,在DNA双螺旋结构模型中碱基藏于内侧,变性时由于双螺旋解开,于是碱基外露,260nm紫外吸收值因而增加,这一现象称为增色效应。见图18-2。

分子杂交的概念及基本原理

图18-2 DNA的增色反应

一、分子杂交的概念: 分子杂交(molecular
hybridization)指具有一定同源序列的两条核酸单链,在一定条件下按碱基互补配对原则经过退火处理,形成异质双链的过程。
利用这一原理,就可以使用已知序列的单链核酸片段作为探针,去查找各种不同来源的基因组DNA分子中的同源基因或同源序列。
二、分子杂交基本原理:

如果升高温度使DNA变性,以温度对紫外吸收作图,可得到一条曲线,称为溶解曲线,由图可见当温度升高到一定范围时,DNA溶液在260nm处的吸光度突然明显上升至最高值,随后即使温度继续升高,其吸光度也无明显变化。由此说明DNA变性是在一个很窄的温度范围内发生,增色效应是爆发式的。从而也说明当达到一定温度时,DNA双螺旋几乎是同时解开的。通常人们把50%DNA分子发生变性的温度称为变性温度,由于这一现象和结晶的融解相类似,故又称融点或融解温度。因此Tm是指消光值上升到最大消光值一半时的温度。

DNA变性 :
DNA变性是指双螺旋之间氢键断裂,双螺旋解开,形成单链无规则线团,因而发生性质改变(如粘度下降,沉降速度增加,浮力上升,紫外吸收增加等)
。 1、DNA变性的方法: 1)加热; 2)改变DNA溶液的pH;
3)有机溶剂(如乙醇、尿素、甲酰胺及丙酰胺等)等理化因素。
2、增色效应:DNA在260nm处有最大吸收值,这一特征是由于含有碱基的缘故。在DNA双螺旋结构模型中碱基藏于内侧,变性时由于双螺旋解开,于是碱基外露,260nm紫外吸收值因而增加,这一现象称为增色效应(hyperchromic
effect) 。利用DNA变性后波长260nm处紫外吸收的变化可追踪变性过程。
3、溶解曲线:如果升高温度使DNA变性,以温度对紫外吸收作图,可得到一条曲线,称为溶解曲线。
4、融解温度:通常人们把50%DNA分子发生变性的温度称为变性温度(即熔解曲线中点对应的温度),由于这一现象和结晶的融解相类似,故又称融点或融解温度(melting
temperature, Tm)。因此Tm是指消光值上升到最大消光值一半时的温度。
5、影响Tm值的因素:Tm不是一个固定的数值,它与很多因素有关: 1)
部因素:pH、离子强度。随着溶剂内离子强度上升,Tm值也随着增大。2)
部因素:DNA的碱基比例、DNA的均一性
;在相同条件下,DNA内G-C配对含量高,其Tm值也高。
6、DNA中的GC含量与Tm值关系: Tm = 69。3 0。41 × %
对于小于20bp的寡核苷酸,Tm=4 2
实验表明DNA分子中克分子含量百分比的大小与Tm值的高低呈直线关系。

图18-3 DNA的Tm值

复性:变性DNA只要消除变性条件,二条互补链还可以重新结合,恢复原来的双螺旋结构,这一过程称为复性(renaturation)

退火:通常DNA热变性后,将温度缓慢冷却,并维持在比Tm低25~30℃左右时,变性后的单链DNA即可恢复双螺旋结构,因此,这一过程又叫做退火。
复性后的DNA,理化性质都能得到恢复。倘若DNA热变后快速冷却,则不能复性。
影响复性速度的因素: 1、DNA浓度:愈高,复性速度也愈快。
2、DNA片段的大小:DNA片段愈大,扩散速度愈低,使DNA片段线状单链互相发现互补的机会减少。因此,在复性实验中,有时将DNA切成小片段,再进行复性。
3、温度:过高不利于复性。
4、溶液的离子强度:通常盐浓度较高时,复性速度较快。
5、DNA顺序的复杂性;简单的分子复性很快,如polyd[T]美高梅app网页,和polyd[A]由于彼此互补识别很快,故能迅速复性。但顺序较复杂的DNA分子复性则较慢。因此通过变性速率的研究,可以了解DNA顺序的复杂性。

综上所述,Tm值和增色效应是目前描述DNA特性所常用的两个量。假定一个DNA大分子最初全部是双螺旋结构,在热变性后消光系数上升30%以上;如果DNA原先局部就处于单链状态,则变性后上升较少。增色效应的大小是DNA性质的一个简单指标,与分子量无关。Tm不是一个固定的数值,它与很多因素有关:pH、离子强度和DNA的碱基比例。随着溶剂内离子强度上升,Tm值也随着增大。在某一离子强度以下,无需加热就使溶于其中的DNA出现不可逆变性。与A-T碱基配对比较,DNA双螺旋内的G-C配对更为牢固。在相同条件下,DNA内G-C配对含量高,其Tm值也高。

假定在一个双链DNA分子内某些片段含有较多G-C碱基对,根据它们局部Tm值差,用电子显微镜就可以观察和测量到这些片段,如在DNA某一片段内含有较多的A-T碱基对,在某一个温度时就可能出现双链解离的现象。但在同一温度下,含G-C对较多部分仍然保持双链结构。这是一种非常有用的技术。

DNA的Tm值与以下因素有关:

DNA的均一性:均一DNA如病毒DNA,解链发生在很窄的范围内,而不均一的DNA如动物细胞NDA其Tm值的范围则较宽。

DNA分子中的含量:一定条件下DNA的Tm值,由G+C含量所决定,因为G+C之间有3个氢链,因此G+C含量较高的DNA,Tm值较高,二者的关系可用以下经验式表示:

%=×2.44

网站地图xml地图